



Find
$$x \notin y$$

 $\begin{cases} x + y = 3 \\ x^{2} + xy + y^{2} = 7 \\ y = 2 \\ (1,2) \\ y^{2} - 3y + 2 = 0 \\ (y - 2)(y - 1) = 0 \\ y = 2 \\ y = 1 \end{cases}$
 $x = 3 - y - 3 - 2 = 1 \\ y = 2 \\ (1,2) \\ y = 1 \\ (1,2) \\ y = 1 \\ (1,2) \\ (1,2) \\ (1,2) \\ (2,1) \\ (2,1) \\ (2,1) \\ (2,1) \\ (1,2) \\ (2,1) \\ (2,$

Y varies directly as
$$x^4$$
. $y = Kx^4$
Y is 128 when x is 2. $128 = K \cdot 2^4$
 $128 = K \cdot 16$
Find Y when x is 3. $K = 8$
 $y = 8(3)^4$ $y = 8x^4$
 $= 8(81) = 7 = 4 = 648$

Y varies inversely as
$$\sqrt{x}$$
. $y = \frac{k}{\sqrt{x}}$
Y is 8 when x is 16. $8 = \frac{k}{\sqrt{16}}$
Find Y when x is 4. $8 = \frac{k}{\sqrt{16}}$
 $y = \frac{32}{\sqrt{x}}$ $y = \frac{32}{\sqrt{4}} = \frac{32}{2} = \sqrt{4-16}$ $(k=32)$

Z varies directly as
$$\chi^2$$
 and
inversely as $\sqrt[3]{y}$. $Z = \frac{k\chi^2}{\sqrt[3]{y}}$
when $\chi = 8$ and $\chi = 8$,
Z becomes (6.
Sind Z when $\chi = 12$ and $\chi = 64$. (6= $\frac{K \cdot 8^2}{\sqrt[3]{8}}$
 $Z = \frac{K\chi^2}{\sqrt[3]{9}}$ $Z = \frac{\chi^2}{2\sqrt[3]{9}}$ $32 = 64$ K
 $K = \frac{12}{2}$
 $Z = \frac{12^2}{2\sqrt[3]{64}}$ $K = \frac{144}{2} = 18$
 $Z = \frac{144}{2 \cdot 4} = \frac{144}{8} = 18$

Use Square-root method to Solve
i)
$$\chi^2 = 200$$

 $\chi = \pm \sqrt{200}$
 $\chi = \pm \sqrt{200}$
 $\chi = \pm \sqrt{100\sqrt{2}}$
 $\chi = \pm \sqrt{100\sqrt{2}}$
 $\chi = \pm 10\sqrt{2}$
 $\chi = \pm \sqrt{2}$
 $\chi = \pm \sqrt{2}$
 $\chi = \pm \sqrt{2}$
 $\chi = \pm \sqrt{2}$
 $\chi = \pm \sqrt{2}$

Use Square-Root method to Solve
1)
$$(2x - 5)^{2} = 98$$

 $2x - 5 = \pm \sqrt{98}$
 $2x - 5 = \pm \sqrt{98}$
 $2x = 5 \pm \sqrt{49}\sqrt{2}$
 $x = \frac{5 \pm 7\sqrt{2}}{2}$
 $\left\{\frac{5 \pm 7\sqrt{2}}{2}\right\}$
 $\left\{\frac{5 \pm 7\sqrt{2}}{2}\right\}$
 $\left\{\frac{5 \pm 7\sqrt{2}}{2}\right\}$
 $\left\{\frac{5 \pm 7\sqrt{2}}{2}\right\}$
 $\left\{\frac{x = -3}{4} \pm \frac{2\sqrt{5}}{4}\right\}$
 $\left\{\frac{x = -3}{4} \pm \frac{2\sqrt{5}}{4}\right\}$

Making a Perfect-Square:

$$\chi^{2} + b\chi + (\frac{b}{2})^{2} = (\chi + \frac{b}{2})^{2}$$

Ex:
 $\chi^{2} + 10\chi + 5^{2} = (\chi + 5)^{2}$
 $\chi^{2} - 12\chi + (-6)^{2} = (\chi - 6)^{2}$
 $\chi^{2} + 18\chi + (9)^{2} = (\chi + 9)^{2}$
 $\chi^{2} - 5\chi + (\frac{-5}{2})^{2} = (\chi - \frac{5}{2})^{2}$

Make a perfect- Square:

$$\chi^{2} + \frac{3}{5}\chi + (\frac{3}{10})^{2} = (\chi + \frac{3}{10})^{2}$$

 $\frac{1}{2} \cdot \frac{5}{5} = \frac{3}{10}$
 $\frac{1}{2} \cdot \frac{5}{2} = \frac{5}{4}$
 $\chi^{2} = \frac{5}{2}\chi + (-\frac{5}{4})^{2} = (\chi - \frac{5}{4})^{2}$

Solve

$$\chi^{2} + 6\chi - 1 = 0$$

 $\chi^{2} + 6\chi + 3^{2} = 1 + 3^{2}$
 $(\chi + 3)^{2} = 10$
 $\chi + 3 = \pm \sqrt{10}$
 $\chi + 3 = \pm \sqrt{10}$
 $\chi = -3 \pm \sqrt{10}$
Completing the Square
Method

Solve

$$\chi^2 - 8\chi + 4=0$$
 Sactorable.
 $\chi^2 - 8\chi + 4=0$ Sactorable.
 $\chi^2 - 8\chi + 4=0$ Soctorable.
 $\chi^2 - 8\chi + 4=0$ Use completing
the Square
 $(\chi - 4)^2 = -4 + (-4)^2$ method to
Solve.
 $(\chi - 4)^2 = 12$ method to
Solve.
 $(\chi - 4)^2 = 12$ $\chi = 4\pm 2\sqrt{3}$
 $\chi - 4 = \pm \sqrt{12}$ $\chi = 4\pm 2\sqrt{3}$

$$0x^{2} + bx + C=0$$
, $0 \neq 0$
Quadratic Equation
 $b^{2} - 4ac$ discriminant
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ Quadratic
Formula

Griven
$$2\chi^{2} = 5\chi = 1 = 0$$

 $0\chi^{2} + 0\chi + 0 = 0$
 $a = 2$ $b = -5$ $c = -1$
 $b^{2} - 4ac = (-5)^{2} - 4(2)(-7) = 35 + 56 = 81$
 $\chi = \frac{-b \pm \sqrt{b^{2} + ac}}{2a} = \frac{-(-5) \pm \sqrt{81}}{3(2)} = \frac{5 \pm 9}{4}$
 $\chi = \frac{5 \pm 9}{4} = \frac{14}{4} = \frac{12}{2}$ $\chi = \frac{5 \pm 9}{4} = \frac{-4}{4} = \frac{-1}{1}$
 $\chi = \frac{5 \pm 9}{4} = \frac{14}{4} = \frac{12}{2}$

Even
$$3\chi^{2} + 5\chi + 6 = 0$$

1) $0=3$ $b=5$ $c=-8$
2) Evaluate $b^{2}-4ac = (5)^{2}-4(3)(-8)$
 $= 25 + 96 = 121$
3) $\chi = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a} = \frac{-5\pm\sqrt{121}}{-3(3)} = \frac{-5\pm71}{6}$
 $\chi = \frac{-5\pm11}{6} = \frac{6}{6} = 1$ $\chi = \frac{-5\pm11}{6} = \frac{-6}{6} = \frac{-8}{3}$

Even
$$\chi^{2} + 20\chi + 100 = 0$$

1) $Q = 1$ $b = 20$ $C = 100$
2) Evaluate $b^{2} - 4QC = 20^{2} - 4(1)(100) = 0$
3) Solve using Quadratic formula.
 $\chi_{-} = \frac{-b \pm \sqrt{b^{2} - 4QC}}{2Q} = \frac{-20 \pm \sqrt{0}}{2(1)} = \frac{-20 \pm 0}{2} = \frac{-20}{2} = \frac{-10}{2}$
[$\chi_{-} = -10$] $\chi_{-} = -10$? Repeated
[$\chi_{-} = -10$] $\chi_{-} = -10$? Repeated

